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HIGHLIGHTS

® Random forest regression is proposed for on-line battery capacity estimation.

® The estimation is developed from partial charging voltage-capacity data.

® Two features indicative of battery capacity fade are extracted from charging curves.
® An incremental capacity analysis is used for assisting battery feature selection.

ARTICLE INFO ABSTRACT

Keywords: Machine-learning based methods have been widely used for battery health state monitoring. However, the ex-
Lithium-ion battery isting studies require sophisticated data processing for feature extraction, thereby complicating the im-
On-line capacity estimation plementation in battery management systems. This paper proposes a machine-learning technique, random forest

State of health
Random forest regression
Incremental capacity analysis

regression, for battery capacity estimation. The proposed technique is able to learn the dependency of the battery
capacity on the features that are extracted from the charging voltage and capacity measurements. The random
forest regression is solely based on signals, such as the measured current, voltage and time, that are available
onboard during typical battery operation. The collected raw data can be directly fed into the trained model
without any pre-processing, leading to a low computational cost. The incremental capacity analysis is employed
for the feature selection. The developed method is applied and validated on lithium nickel manganese cobalt
oxide batteries with different ageing patterns. Experimental results show that the proposed technique is able to
evaluate the health states of different batteries under varied cycling conditions with a root-mean-square error of
less than 1.3% and a low computational requirement. Therefore, the proposed method is promising for online
battery capacity estimation.

1. Introduction the degradation level of batteries. Quantitatively, it can be calculated
by the ratio of the actual cell capacity to its initial value.

Lithium-ion batteries (LIBs) have been widely applied as energy Extensive research efforts have been dedicated to SOH monitoring
storage systems, such as the fields of electrified vehicles and power since the last decades, resulting in different online estimation methods.
grids. The biggest concern about these batteries is their limited lifetime, These SOH monitoring techniques can be categorized into two types,
as their performance deteriorates with usage. To prolong a battery’s namely electrical model-based and data-driven approaches. Electrical
longevity while ensuring reliability over the entire service life, accurate models use passive electrical components, such as resistors and capa-
diagnosis of the state of health (SOH) in real-time is essential. The SOH citors, to simulate the behavior of a battery. Enabled by these models,
reflects the current capability of a battery to store and supply energy recursive Bayesian state estimation algorithms (such as the extended

relative to that at the beginning of its life and is an indicator to evaluate Kalman filter, EKF) [1,2] and particle filter (PF) [3,4] have been
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adopted to identify and update SOH related model parameters, e.g.,
capacity and internal resistance, according to data acquired during
operation. Most of these filters were implemented in a joint/dual con-
figuration for the co-estimation problem of the state of charge (SOC)
and capacity. For example, Plett [1] pioneered the concurrent use of
two EKFs for SOC and SOH estimation. At each time step, the results of
each EKF were calculated separately and then fed into its counterpart.
Zou et al. [2] proposed a general multi-timescale estimation algorithm
with rigorous stability analysis and then applied it to estimate battery
SOC and SOH. To further improve the estimation accuracy, Schwunk
et al. [3] introduced PF for battery state estimation. Although the class
of electrical model-based methods can effectively estimate the capacity
under certain conditions, these techniques suffer from intensive com-
putation required by a large number of matrix operations, thereby
hindering their real-time application in battery management systems
(BMSs). Data-driven methods rely on a significant amount of statistical
data to predict battery ageing behavior. Because physical insights and
mathematical models with a set of parameters are not needed, these
methods have potential to significantly reduce the computational time
in comparison with electrical model-based approaches.

One of the most widely used data-driven techniques is incremental
capacity/differential voltage (IC/DV) analysis. The IC/DV analysis has
proven to be a powerful tool for battery capacity estimation [5]. IC is
calculated by differentiating the change in battery capacity to the
change in terminal voltage during either charging or discharging, while
DV is defined as the inverse of IC. With this method, the voltage pla-
teaus on charging/discharging curves can be transformed into clearly
identifiable peaks on IC/DV curves. Each peak of the curve represents a
specific electrochemical process taking place in the cell and can be
characterized by features such as the intensity and position [6]. These
peak features are closely related to battery capacity fade and can
therefore be used as indicators for the SOH estimation. Weng et al. [7]
estimated the battery SOH by relating it to the peak intensity of IC
curves. Li et al. [8] established a linear regression relationship between
battery capacity and the peak position on IC curves. However, IC/DV
curves are sensitive to measurement noise inherent in battery systems
[8,9]. Accordingly, proper smoothing methods have to be proposed for
obtaining smooth curves that facilitate identification and evaluation of
IC/DV curve features.

In addition to the IC/DV analysis, a wealth of machine learning
techniques have been devised for battery SOH estimation, such as ar-
tificial neural network (ANN) [10,11], support vector machine (SVM)
[12,13], regressive vector machine (RVM) [14] and Gaussian process
regression (GPR) [15,16]. These SOH estimators are trained until they
learn the complex mapping from the feature space to the capacity
measurement space. To estimate battery SOH accurately, a critical step
in machine learning algorithms is to process the data, such as measured
current, voltage, and temperature, to effectively extract representative
and necessary features of the battery ageing process. In general, these
features can be categorized into: internal features, processed external
features, and direct external features.

In details, the internal features, like battery internal resistance, ca-
pacitance and battery SOC, cannot be measured directly from BMS
sensors and must resort to parameter/state estimation algorithms. Pan
et al. [17] developed an extreme learning-machine-based method for
battery capacity estimation, in which parameters of an electrical model,
i.e., internal ohmic resistance and polarization resistance, were con-
sidered as the input data. Then, they identified these model parameters
in real-time using a recursive least square algorithm. In comparison, the
processed external features, e.g., peak position and intensity, are ex-
tracted from differential charging curves, like IC/DV curves [18,19] and
voltage gradient curves [10,16]. Berecibar et al. [19] estimated cell
capacity with a selection of features from IC/DV curves by using three
different regression methods, namely linear regression, ANN and SVM.
Similar work has been conducted by Wang et al. [18] with the aid of
GPR. Wu et al. [10] trained a polynomial neural network based on the
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arc length and curvature from voltage velocity curves, and established
the relation between the geometric properties of charging curves and
the battery capacity. Different to the above two types of features, the
direct external features are directly recorded in BMSs during battery
operation, typically including the measured terminal voltage, current,
and surface temperature. Hu et al. [14] applied an RVM algorithm to
learn the complex dependency of the battery capacity on characteristic
features extracted from voltage and current measurements during
charging operation. Recently, Richardson et al. [15] proposed a capa-
city estimation algorithm by using GPR based on a small portion of
charging voltage-time data under a constant current. They selected a
subset of the smoothed data from the charging voltage curve as the
model input to reduce the computational cost. Among all these input
features used for model training, the direct external features are the
easiest to obtain.

Due to the limited computational capability of the present BMSs,
many features of the batteries are hard to obtain during the actual
operation. A state monitoring method which can directly utilize the
measurable features from the BMS for battery SOH estimation is highly
desired. Ideally, the battery modeling and data pre-processing steps
should be avoided to reduce computational efforts. Motivated by the
correlation between the battery capacity and selected features of IC
curves established in our previous work [8], we seek a method capable
of estimating the battery capacity accurately by directly using partial
charging curves without any pre-derivation or pre-smoothing steps.
Driven by this purpose, this paper proposes a novel statistical learning
method, random forest (RF) regression, to diagnose the SOH of LIB
based on the voltage, current and time measurements during the
charging process. The RF regression, initially presented by Breiman
[20], is one of the most popular supervised machine learning algo-
rithms and has been successfully applied to both classification and re-
gression in many different fields, such as wind power forecast [21],
wheat biomass estimation [22], and spatial prediction of soil organic
carbon [23]. This method has been demonstrated to have the ability of
well approximating variables with nonlinear relationships and also
have high robustness performance against outliers. Despite the ex-
cellent predictive performance and reliable identification of relevant
variables and interactions, few has employed the RF regression for SOH
monitoring of lithium-ion batteries. The present work aims to fill this
gap by proposing an RF regression-based estimation algorithm for on-
line battery capacity estimation. This proposed approach has several
salient characteristics desired for SOH estimation in BMSs. First, it is
able to maintain high accuracy in the absence of any pre-selection of
features, although confronted by significant noise in the predictive
variables. Furthermore, while overfitting can cause inaccurate estima-
tion with new testing data and thus negatively affect the model gen-
erality, the proposed algorithm is sufficiently robust against the over-
fitting phenomena.’ In addition, compared to other machine learning
techniques, e.g., ANN and SV, it only needs a few tunable parameters
and therefore requires low effort for offline model tuning [20].

The remainder of this article is organized as follows. Section 2
specifies the experiments, including implementation procedures, testing
cells, and equipment. The proposed RF regression technique, feature
selection, and model validation tools are presented in Section 3, fol-
lowed by experimental implementation and discussion of the results in
Section 4. A comparative study of the proposed SOH estimation algo-
rithm and its two benchmarking methods is conducted in Section 5.
Section 6 completes the present work with a concluding summary.

1 A model that over-fits the data means that it is too flexible so that the
isolated structures (e.g., noise) that are specific to the learning set can be
captured erroneously.
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2. Experiments and analysis

This section specifies the characteristics of experimental objects and
testing equipment. The procedures of the cycling ageing test and the
reference performance test are described in details.

2.1. Cell specifications and test equipment

The performance of the proposed method is evaluated based on data
from commercial nickel-manganese-cobalt (NMC)/graphite pouch cells
under different cycling conditions. Two types of NMC batteries from
different manufacturers are considered: (i) seventeen type A cells are
used for this research, each of which has a nominal capacity of 20 Ah;
(ii) six type B cells, each with a nominal capacity of 31.5 Ah, are tested.
The basic parameters of these battery cells are summarized in Table 1,
where the manufacturers are not provided due to the project con-
fidentiality.

Table 1
Specifications of tested NMC cells.

Properties Type A cells Type B cells
Manufacturers A B
Cell Weight 428 g 642 g
Nominal capacity
(at 0.3I; rate) 20 Ah 31.5 Ah
Nominal voltage
(at 0.3 rate) 3.65V 3.7V
Energy density 174 Wh-kg! 180 Wh-kg—!
Power density
(at 50% SOC, 10 5) 2300 W-kg™? 2300 W-kg~!
Voltage range 3-4.15V 3-4.2V

During the experiments, all type A cells were placed in a climate
chamber (350L CTS). The experiments were performed on a 16-
channel, SBTO550L type battery test system manufactured by PEC with
a current range of 0-50 A and a voltage range of 0-5 V. The voltage and
current accuracy is in the full scale of + 0.03%. The data acquisition
system has a sampling frequency up to 100 Hz. All the type B cells were
placed in an air-conditioned room within a temperature range of
25+ 3°C.

2.2. Testing procedures

Due to the specific application requirements, type A cells were cy-
cled under more intense conditions than type B cells in terms of the
current rate and the temperature. This section focuses on the testing
procedures for type A cells. The cycling ageing matrix for type B cells
has been presented in our previous work [8].

The batteries were aged under a charge/discharge test regime with
constant currents. During charging, the current rate (C-rate) of I;/3 was
applied in the CC step until the battery reached its predefined higher
voltage limit.> Then, the batteries were discharged immediately with
the current rate of 1 I, to the predefined lower voltage limit. Seventeen
cells in total and divided into six groups were used for the cycling
ageing test under different cycling depths of discharge (DOD), cycling
middle-SOC (mid-SOC) levels and temperatures. The cells in groups 1,
2, 3 and 4 were cycled at a temperature of 35 °C under different cycling
DOD (100%, 80% and 50%) and mid-SOC (50% and 65%). The cells in
groups 5 and 6 were aged under an elevated temperature of 45 °C with
different cycling DOD of 100% and 80%, respectively. The cycling
conditions under which type A cells are tested further summarized in

2 [, represents the current rate as documented in the standard IEC 61434 and
defined by I, = C/1h [24].
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Table 2
Cycle ageing test matrix of type A cells.

Cell Cycling Mid- Temp, °C Charge C- Discharge C-
No. DOD, % SOC, % rate rate
Group1l 1,2,3 100 50 35 I/3 115
Group 2 4,5,6 80 50 35 L/3 11
Group3 7,8,9 50 50 35 L/3 15
Group 4 10, 50 65 35 L/3 1L
11,12
Group 5 13, 100 50 45 L/3 15
14,15
Group 6 16,17 80 50 45 L/3 15
Table 2.

Battery capacity tests were carried out through the whole experi-
mental framework to acquire the information of battery health states.
At each time to start capacity tests, the temperature of the climate
chamber was adjusted to 25 °C. To do so, at least three hours of resting
time were required for the batteries to cool down. Meanwhile, the
constant current-constant voltage (CC-CV) mode was used during
charging: the C-rate of I,/3 was applied in the CC step until the battery
reached its cut-off voltage of 4.15V; this is followed by a CV step, in
which the battery remained in the floating mode at the cut-off voltage
until the current reached the minimum threshold of 0.1 I,. After resting
for 1 h, the battery was then discharged at a constant current of 1,/3 till
3.0 V. The obtained discharge capacity was used to calculate the battery
SOH. Before the cycling tests to age battery cells, an initial capacity test
was performed to determine each cell’s actual rated capacity. Then,
periodic capacity tests were performed with cycling intervals of every
100 full equivalent cycles (FECs) to acquire the trajectory of battery
ageing. A summary of the complete test procedure is illustrated in
Fig. 1.

3. Statistical learning approach

This section elaborates the feature extraction from real-time mea-
sured data for SOH estimation. Two characteristic features, indicative
of the battery capacity fade, are exacted from the charging voltage-
capacity curve and then used as the input features for model training
and validating. Additionally, the fundamentals behind RF regression
techniques as well as their performance evaluation tools are presented.

3.1. Feature extraction

The cells have been cycled to different SOH levels under varying
cycling conditions. At various stages throughout the battery life, a ca-
pacity test with a full CC-CV charge cycle was applied on the cell with a
fixed current at 25 °C, and the voltage vs. capacity (V—Q) data from this
cycle was recorded. The actual battery capacity was obtained from the
full charge/discharge cycle at this current rate, and the measured dis-
charged capacity was used for calculating the real battery SOH. In
reality, the battery discharge process is unpredictable as it depends on
the varying utilization mode of the battery system. Nevertheless, the
charge current is often constant in many applications such as charging
of electric vehicles. Therefore, the charging V—Q curves were chosen
for battery SOH estimation.

A detailed flow diagram of feature extraction is presented in Fig. 2.
A full charging V—-Q curve of a fresh NMC cell under constant current
mode from the capacity test is used as a demonstration. The offline
feature extraction process includes two steps:

Step 1: Defining voltage boundaries. In reality, batteries are rarely
discharged to 0% SOC and charged to 100% SOC. Furthermore, the
initial charging SOC usually is uncertain. Thus, the proposed SOH es-
timation method should be able to utilize partial charging curves. In
this regard, only a specific voltage range of the testing data is selected
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/I 25°C, 1/3 charge and discharge

CC: 1/3 charge, 1 I, discharge

Group 1: 35°C, 100% DOD, 50% Mid-SOC
Group 2: 35°C, 80% DOD, 50% Mid-SOC
Group 3: 35°C, 50% DOD, 50% Mid-SOC
Group 4: 35°C, 50% DOD, 65% Mid-SOC
Group 5: 45°C, 100% DOD, 50% Mid-SOC

Capacity test after
every 100 FECs

Group 6: 45°C, 80% DOD, 50% Mid-SOC

/I 25°C, 1/3 charge and discharge

Cell
Capacity <
80%

— No

Yes

End of Test

Fig. 1. Flow chart of the battery testing procedure for type A cells.
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Fig. 2. Illustration of charge-related features extraction from a charge cycle.

for capacity estimation, and the voltage thresholds include the lower
voltage bound V; and upper voltage bound V.

Step 2: Feature extraction as input data. For each of the charging
curves in the database obtained offline, the recorded relative capacity
values (Q;) with AV intervals in the specific voltage region (between V]
and V,) is used as the input vector - X; (also called predictor variables).

200

Q; is calculated based on coulomb counting by integrating the constant
current with the time that battery charged from V] to V;, where V; is the
voltage at time t. The initial capacity Q, is therefore equal to 0. X; is a
vector with k variables, where X; = {xo, x, ..., X, ..., Xx}, and x; is the
relative charging capacity Q; at time t. The value of k can be calculated
by k= (V,—V))/AV + 1, which indicates the size of X;. As the cell
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Fig. 3. Illustration of Random forest regression construction.

capacities for each charging curve in the offline database are known,
each partial charging capacity vector X; has an associated SOH value
denoted as Y;. The capacity test was carried out on cells after every 100
FECs, and the result consists of M constant charging curves throughout
the ageing experiment. This indicates the cells have been cycled for
M x 100 FECs. Therefore, M feature vectors, {X;, X;,..., Xy}, and their
target SOH values, {Y;, Y,,..., Yy}, can be obtained from each of the
training cells and form a training dataset {(X;, Y}), i =1, 2, ..., M}. The
training datasets are used to train and construct an RF model. For
testing an RF regression model, the extracted feature vectors of the
tested cells are fed into the trained model, which can produce estimated
SOH values of different cells. For online application, when the battery
voltage reaches V}, the BMS will start to record the initial voltage V; and
capacity Qp. When the battery voltage increases by AV, the corre-
sponding charging capacity will be recorded until the upper voltage
level V, is reached. For example, whenV; = 3.6 V,V,= 3.8Vand AV =
2mV are chosen, X would consist of the relative capacity values at the
voltages of {3.600 V, 3.602 V, 3.604 V,...,3.800 V}. In short, the measured
battery charge voltage and capacity are recorded in an onboard storage
component of BMS as soon as the battery voltage reaches V;, and the
data recording process will be stopped when Vj, is reached. The recorded
datasets are then fed into the trained model for SOH estimation after
the charging process.

3.2. Random forest regression

Random forest generates hundreds or even thousands of decision
trees, which act as regression functions on their own, and the final
output of the RF regression is the average of the outputs of all decision
trees. A decision tree, also called Classification and Regression Tree
(CART), is a statistical model firstly introduced by Breiman et al. in
1984 [25]. A decision tree is a nonparametric model. It does not assume
any prior parameters for the class densities nor fixes the tree structure.
The tree grows during the learning process depending on the com-
plexity of the fed-in data [26]. Each decision tree consists of decision
nodes and leaf nodes. The decision nodes evaluate each fed-in sample
by a test function and pass it to different branches based on the features
of the sample. Let X represent the input vector containing m features
with X = {x, %, .., x,;}, Y the output scalar and S, the training set

containing n observations which can be expressed as
Sy =1{X, Y1), (X%, Y), ., (X, Y)}, X E€ER™, YER. D

During training, the input data are split at each node by the algo-
rithm, so that the parameters of split functions become optimized to fit
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with the S, set. The decision tree has to make the best split among all
variables during the first step. This splitting process starts at the root
and each node applies its own split function to the new input X. This is
repeated recursively until a terminal node (also called tree leaves) is hit.
It is common to stop the tree when a maximum number of levels is
reached, or when a node contains less than a predefined number of
observations. At the end of this training process, a prediction function
h (X, S,) is constructed over S,.

The random forest regression model is an extension of the CART
technique and can offer better prediction performance. The training
stage of RF is to construct multiple de-correlated decision trees. Each
tree in RF is grown with a randomized subset of predictors and hence is
called ‘random’ forest. RF uses L tree-structured base -classifier
h(X, ©), wherek =1, .., L, © is a family of independent, identically
distributed random vectors, and X is an input vector [20]. It is an en-
semble method that combines all the generated decision trees using an
algorithm called ‘bagging (or bootstrap aggregation)’. Bagging is a
technique proposed by Breiman [27] and can be used with many re-
gression methods to reduce the variance associated with prediction,
thereby improving the prediction performance. RF can be built by
randomly sampling a feature subset for each decision tree, and/or by
randomly sampling a training data subset for each decision tree. This
randomly collected sample process is called ‘bootstrap’, and a bootstrap
sample is obtained by randomly selecting n observations with re-
placement from S,,, where each observation has the probability of 1/n to
be selected. The bagging algorithm selects several bootstrap samples
s, ..., 529 and applies the previous tree decision algorithm to these
samples in order to construct a collection of g prediction trees
A X, S,?l), PT X, S,? 7). The ensemble produces g outputs corre-

sponding to each tree, }/’\i = PAz(X , SO, 1/)2 =
hx, 592, ..., /1\/[, = h(X, S29).. Then the aggregation is performed by

averaging the outputs of all trees. Consequently, the estimation ¥ of the
output can be obtained by [28]

[x, S,?l),

where Y] the output of [-th tree, and [ =1, 2, ..,q. The framework of
using RF regression for prediction is illustrated in Fig. 3.

A prominent advantage of using bagging is to avoid the correlation
of different trees, and the diversity of the trees can be accordingly in-
creased by making them grow from different training data subsets
created in RF [28]. Some data may be used more than once in the
training, while others might never be used. Thus, greater stability of RF
is achieved due to the utilization of bagging, which makes RF regression
more robust when facing slight variations in input data [20]. Another
advantage of bagging is the immunity to noise since it generates non-
correlated trees through different training samples. A weak predictor
may be sensitive to noise, but the average of several de-correlated de-
cision trees can largely decrease the noise sensitivity [21]. An essential
feature of RF is that the trees inside grow with no pruning, making them
light from a computational perspective [28].

RF regression is very user-friendly with only two parameters to
tune: the number of trees (n;,.) and the number of random features for
each split (m,,) in the forest to build [29]. This is little need to fine-tune
parameters to achieve excellent performance. In general, the more trees
are grown in the forest, and the more robust and higher the accuracy of
the prediction can be achieved. However, an increased amount of trees
can lead to an enhanced computational burden. The generalization
error converges as the number of trees increases, meaning that the es-
timation accuracy cannot be increased after reaching a certain point.
The number of trees needs to be set sufficiently high to allow for this
convergence, where the default value, n,,, = 500, is often used for
prediction. m,,, is a sensitive parameter determining model strength and
defining the strength of each tree and the correlation between any two

7=
@)
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Table 3
Construction of Random forest [29].

Step 1. Draw nge bootstrap samples from the original data, a bootstrap subset

contains approximately 2/3 of the elements of the original dataset.

Step 2. To grow an unpruned regression tree using the bootstrap sample with the
following modification: at each node, rather than choosing the best split among
all predictors, randomly sample myy, of the predictors and choose the best split

from among those variables.

Step 3. Predict new data by aggregating the predictions of the ng., trees (i.e.,

majority votes for classification, and average for regression).

trees in the forest. Increasing m,,, can enhance the strength of each tree,
however, the correlation between trees will be increased at the same
time [30]. The improved tree strength improves model performance,
while the increased correlation among trees can weaken it. It has been
reported that the default value of m,,, one-third of the number of all
predictor variables, is often a good choice [29]. To summarize, the
basic steps for growing RF are listed in Table 3.

For each regression tree construction, a new training set (bootstrap
samples) is generated with replacement from the original data. So, not
all the samples are selected for the training of the g-th tree in the
bagging process and some of the training data may be repeatedly used
in the training sample. The samples that are not selected are included as
part of another subset called out-of-bag (OOB) samples. Normally, two
thirds of the new training samples are utilized for constructing the re-
gression function whereas one third constitute the OOB sample. At each
time when a regression tree is constructed with the training sample, the
OOB sample is used to evaluate the performance of the regression tree.
It is a kind of built-in cross validation process. In this way, RF can
compute an unbiased estimation of the generalization error without
using an external data subset as the trees have not seen these ob-
servations while training. Furthermore, the danger of overfitting can be
largely reduced by using RF. This built-in validation feature improves
the generalization capability of the RF. To obtain the total learning
error, an average of the prediction error by each individual tree using
the OOB sample can be obtained by

n
MSE ~ MSE®% = n71 3" [Y (X)-Y ]

i=1 3
where Y (X)) is the predicted output corresponding to a given input
sample X;, whereas Y; is the observed output representing the real va-
lues and n is the total number of OOB samples. This error can determine
how efficient the RF prediction is when it is exposed to unknown
samples. The OOB error is an unbiased estimate of the generalization
error, and it is proved that RF produces a limiting value of the gen-
eration error [20].

Matlab 2017a is used in this work to perform RF model training and
testing. For the RF computations, we used the random forest package
from Liaw et al. [29]. The package is in fact written in R, and a MEX
interface is used in Matlab to call the C code used in the R package.

3.3. Performance evaluation tools

By comparing the actual SOH values from the experiment with the
predicted ones, the prediction accuracy of the RF algorithm can be
evaluated. Below, we list the metrics applied in this work for evaluating
the quality of RF-generated predictions.

(1) Mean Absolute Error (MAE)

The MAE is defined by Eq. (4) and averages the absolute differences
between the tested and predicted values. All the errors have the same
weight in MAE. The smaller the MAE values, the more accurate the
prediction result.
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1< “
MAE = — ) ly-51

n i=1 (4)
where n represents the number of observations, y, represents the ex-
perimental values and 3 represents the predicted values.

(2) Root Mean Square Error (RMSE)

The Root Mean-Square Error (RMSE) is frequently used to measure
the difference between values predicted by the model and the observed
values. It is very similar to MAE, but it penalizes larger absolute values
by giving more weight to them than the MAE. The larger the difference
between MAE and RMSE, the bigger the variance in the individual er-
rors. RMSE is defined as

Z?:l (yi _5)\1' )’
s o

(3) Maximum absolute error (ME)

The maximum absolute error the largest difference found between
the estimated and observed values

ME = max ly—3!

1<i<n

(6)
(4) Goodness-of-fit (R?)

R? is another measure of how closely the predicted values from a
model match the observed values. The ideal R? value for a model is 1,
which indicates that the model can explain all of the variability of the
target class. It is defined as

ZL (-yl_j)\l )2

Yo 03 7)
where y represents the mean of response variables. When the predicted
values are close to the experimental ones, the MAE, ME and RMSE are

close to zero. Conversely, R? close to 1 indicates a good match between
measured and predicted data.

R =1-

3.4. Leave-one-out cross validation

Leave-one-out cross validation (LOOCV) is used here to assess the
performance of the proposed RF regression for battery capacity esti-
mation. Fig. 4 illustrates a schematic of the LOOCV approach used in
this work. The complete feature dataset X consists of seventeen subsets,
namely X, X, .., Xa7, that were obtained respectively from the
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Fig. 4. A schematic display of leave-one-out cross validation process.
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seventeen tested type A cells. Each subset is composed of M extracted
features vectors, {X;, X, ..., X)), obtained from M constant charging
curves (see Section 3.1). As the seventeen cells are cycled under six
different conditions, they are correspondingly divided into six in-
dependent data groups, as indicated in Table 2. The cells under the
same cycling conditions retain similarities in the ageing pattern. We
leave out the cells from one group as a test dataset (shown in orange)
and compile the other five groups together to form a training set (shown
in blue). Since the validation datasets are not used in the training
process, the trained model can provide an approximately unbiased es-
timate. This process is repeated six times until each group is left out in
turn. Here, 6-fold cross validation is performed for the proposed RF
regression model. The LOOCV RMSE is computed as the average result
of all six estimates, and the average represents the final error [31]. In
this work, we estimate with the following equation:

[k

~_ (RMSE;)?

LOOCYV = \/ Zl:l(ik)

k 8)

where k is the iteration counter during cross validation, and RMSE; is
the RMSE obtained from the k-th iteration according to Eq. (5).

4. Results on type A batteries

The data from the seventeen type A batteries aged under different
cycling modes were used for verifying the effectiveness of the proposed
method in capacity estimation. The influences of model parameter and
input features on the estimation accuracy are discussed in this section.

4.1. Cycling ageing results

The battery capacity fades with cycling, and the correlation between
the cycle number with the SOH evolution of type A cells is illustrated in
Fig. 5. The cells cycled under the same conditions are marked with
identical color. As can be seen, the capacity fade rates of cells under
different cycling conditions are quite different. Specific stress factors
can accelerate the ageing process, such as cycling DOD, temperature
and mid-SOC. Cells in groups 1 (black), 2 (red) and 3 (green) were
cycled under the same temperature and mid-SOC, but under different
cycling DOD. Group 1 cells show the fastest ageing rate due to the
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deepest cycling DOD. At the elevated temperature of 45 °C, cells from
group 5 aged faster than group 6 due to a higher cycling DOD. This
observation is in line with the reports from the literature [32,33].
Temperature is another critical stress factor for battery capacity de-
gradation. When the cycling temperature increased from 35 °C to 45 °C,
the battery ageing rate increased significantly. One can observe this by
comparing the capacity degradation data between cells from group 6
(magenta) and group 2 (red). The two groups of cells were cycled under
the same DOD and middle SOC. Cells from group 6 suffered from a
faster degradation rate due to the higher cycling temperature. These
cells reached their EOL after only 900 FECs, while the SOH of cells from
group 2 was around 95% after the same number of cycles. The impact of
cycling middle SOC on battery degradation rate can also be observed by
comparing the capacity fade between cells from group 3 (green) and
group 4 (blue). During the first 1000 cycles, the two groups of cells
show similar degradation behavior. After 1000 cycles, group 4 cells
with a higher cycling middle SOC tend to degrade faster than group 3.
Cells were not cycled to EOL due to time constraints. By comparing the
capacity fade rates from the three groups, it is clear that increasing the
battery cycling DOD, middle SOC and temperature can accelerate the
battery capacity fade process. The full charge/discharge of batteries and
high operating temperature should be avoided in real applications. The
cycling data from seventeen type A cells will be used to verify the ef-
fectiveness of the proposed machine learning algorithm for capacity
estimation in the next sub-sections.

4.2. Random forest regression model

In this section, the estimation performance of constructed RF re-
gression model is examined. As mentioned in Section 3.1, characteristic
features need to be selected first as input for the RF model. Herein,
relative capacity values collected in the charging voltage region of
3.6-3.8 Vin 2mV intervals were used for model training and testing. To
assess the quality of the model, the fit to the training data and the OOB
validation statistics are considered, since RF does not overfit and a
limiting value of the generalization error is obtained when the number
of trees are increased. Fig. 6 presents the OOB error (MSE®°F) as a
function of the number of trees, where m,,, was set as the default value
(one-third of the total number of predictor variables). From approxi-
mately 200 trees onwards, the OOB error converge to a stable value for
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Fig. 5. SOH evolution of type A cells under different cycling conditions.
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Fig. 6. OOB error converges rapidly as more trees are added to the random
forest.

all tested groups. It is also found that increasing the number of trees
above 200 does not improve the estimation accuracy but sacrifices the
computational cost. From this figure, we can observe that the OOB error
is a suitable estimator for error convergence detection and the random
forest does not overfit as the value for OOB error converges to a small,
but non-zero value. In this work, it was decided to construct the re-
gression model with the default value of n,,, = 500. When the CPU time
is limited for online application with massive datasets, a smaller value
may be used for n,., at the cost of some estimation accuracy for battery
capacity.

The battery SOH estimation results from these datasets are listed in
Table 4 (setting 2) and are further discussed in the next section. As can
be seen, the trained RF model provides good estimation results as the
RMSEs of all tested samples are less than 1.3%. These results demon-
strate the ability of the RF model to learn the necessary information
using the training set.

4.3. Influence of voltage range on estimation accuracy

In this work, the partial charge curve was generated from a full charge
curve for battery capacity estimation. As described in Section 3.1, a spe-
cific charging voltage range should first be defined as the input vector X
for training and testing. The capacity data were generated from a uniform
distribution between a lower voltage bound V; and an upper bound V;, with
specific voltage intervals. Herein, we defined the voltage intervals as 2 mV
for all tested cells. Three settings were considered for the voltage bounds:
(i) Setting 1 - low initial SOC (V; = 3.4V and V;, = 3.6 V); (ii) Setting 2 -
middle initial SOC (V; = 3.6 V and V,, = 3.8 V); (iii) Setting 3 - high initial
SOC (V, =3.8Vand V, = 4.0V).
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The three settings correspond to three different SOC ranges: (i)
1-15% (iii) 15-60% and (iii) 60-85%, respectively. They were chosen
to investigate how the voltage range affects the accuracy of battery
capacity estimation. Fig. 7 illustrates the process of generating feature
vectors from the charging capacity curves by different settings. The
bottom three figures illustrate the partial voltage vs. relative capacity
curves of cells after different cycles in the three different settings. The
relative capacity is calculated based on Coulomb counting by in-
tegrating the charging current with time. The initial relative capacity
values at the lower voltage limit are always zero for all three settings.
For each of the settings, the feature data were generated using the
charge curves obtained from the capacity test after every 100 FECs. The
extracted partial charging curves were sampled and converted to fea-
ture vectors X, which correspond to the relative charge capacity cal-
culated from the lower voltage bound with a specific voltage interval.
The target displacement Y is the battery SOH calculated from the ex-
periment. The M extracted feature vectors at different settings,
X, X, ..., Xy, and their target capacity values, Y;, Y5, ..., Yy, were
used to train the RF regression model. Note that setting 1 represents the
scenario where a cell undergoes the deepest discharge, compared to the
scenario in settings 2 and 3, before the next charging cycle starts.
Therefore, the data collected from setting 1 is the least common in real
battery use, as batteries are barely discharged below 1% SOC. To obtain
the data from settings 2 and 3, the starting charging voltage of the
battery should be lower than 3.6V and 3.8V, respectively. The lower
voltage limit requirements from settings 2 and 3 are suitable for most
practical cases. The SOH estimation errors by the proposed RF regres-
sion method with the input data extracted from three different voltage
ranges are compared in Table 4. For each group, the model was tested
on the cells in this group and trained on all the other cells. The esti-
mation performance of the proposed technique for each group was then
measured by the four metrics: MAE, RMSE, maximal absolute error and
R, Best values, namely lower errors and higher R?, are marked with
bold characters for more straightforward comparison. The overall per-
formance of the developed model is evaluated by LOOCV RMSE, which
is also presented in the same table. It is observed that the proposed
method performs best with the input data from setting 2, with the
lowest LOOCV RMSE of 0.82%. Therefore, to ensure the best SOH di-
agnosis accuracy, the data should be recorded in the middle SOC range.
The possible reasons for this will be explained thoroughly in Section
5.1.1 by the IC analysis. Since the proposed RF regression model can
provide the best estimation accuracy with the input data collected in
the voltage region of 3.6-3.8 V, we define the middle SOC as the default
voltage range for data collection in further discussion.

The SOH estimation results of the tested cells by the proposed
methods with setting 2 are illustrated in Fig. 8(a)-(d). It is observed
that the RF regression method can closely track the battery capacity
fade trend throughout the cycling test for all tested cells with different
ageing behavior. For instance, cells from group 5 were cycled under the
harshest condition (45 °C and 100% DOD), and they showed a much
faster capacity fade rate than the other cells. Nevertheless, the trained

Table 4
Errors of SOH estimations on the four groups of type A cells by the proposed RF method with the input from different voltage regions (Setting 1, 2 and 3).
Group MAE (%) RMSE(%) Max Error(%) R?
Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3
1 1.47 0.67 1.12 1.66 0.74 1.30 3.77 1.45 3.14 0.89 0.97 0.93
2 0.95 0.62 2.81 1.10 0.82 4.44 2.67 2.47 15.55 0.91 0.97 0.12
3 0.85 0.36 1.42 1.11 0.48 1.82 3.67 2.22 5.07 0.89 0.98 0.72
4 2.22 0.62 3.98 2.60 0.84 4.64 10.47 2.67 16.58 0.81 0.98 0.14
5 2.57 1.23 4.02 2.68 1.26 4.73 5.05 2.67 11.19 0.71 0.95 0.12
6 0.97 0.43 1.83 1.33 0.55 2.40 6.16 1.50 7.80 0.03 0.92 0.30
LOOCV - - - 1.86 0.82 3.52 - - - - - -

204



Y. Li et al

Applied Energy 232 (2018) 197-210

4.2 T T T
4t |
> 3.8 .
> Y
o) c
536l Setting 3 |
s
Y
Setting 2
3.4 =
Setting 1 J
32 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
Capacity (Ah)
v v
3.65 3.85 4.05
3.6 3.8 4
> 3.55 375 > 395
5 g 5
> 35} > 37 i 2 39
5 —soH=100% | 5 ——SOH=100% | | = ——SOH=100%
L 345 — soh-os2w|| 3 365 ——soH=082% | Q 3.85 — SOH=98.2%
SOH=92.6% SOH=02.6% SOH=92.6%
34 ——SOH=88.5% 3.6 ——SOH=88.5% 38 ——SOH=88.5%
——SOH=86.1% ——S0H=86.1% ——SOH=86.1%
3.35 3.55 3.75
0 1 2 3 0 2 4 6 8 10 0 1 2 3 4 5

Relative Capacity (Ah)

e

(Xli Yl)' (XZ' YZ)- i (XM' YM)

Relative Capacity (Ah)

e

(X1, Yl)' (XZI YZ)- e (XM' YM)

Relative Capacity (Ah)

O

(le Yl)' (XZI YZ)- e (XMf YM)

Fig. 7. Extraction of features from charging curves with three different voltage ranges. The extracted partial charging curves are sampled and converted to feature
vectors X, which correspond to the relative charging capacity calculated from the lower voltage bond with specific voltage interval. The target displacement Y is the

battery SOH calculated from the experiment.

RF regression model-based on the training dataset from the other
groups is still able to give an accurate estimation result on these cells
despite their different ageing patterns. This demonstrates the excellent
estimation capability of the RF model for unknown datasets. However,
it should be noted that the capacity tests on all tested cells were per-
formed at 25 °C, and the influence of temperature on the input data is
outside the scope of this work.

4.4. Influence of voltage intervals

In this section, a parametric study is carried out to investigate the
effect of the sampling rate (voltage intervals) on the estimation accu-
racy of the RF regression model. For each tested battery, we collected
several dataset with different voltage intervals (2, 5, 7, 10, 15, 30, 50
and 100mV). Increased voltage interval corresponds to decreased
sampling rate and the number of input features. For instance, when the
cells are charged from 3.6V to 3.8V with 2mV interval, totally 101
relative charge capacity values can be recorded by the BMS. If the
voltage interval increases to 100 mV, only 3 data points can be recorded
during the charging process. A plot of the RMSE for the estimation
output from RF model with different sampling rates is shown in Fig. 9.
It can be observed that for all tested groups the RMSEs are almost
constant from 2 to 30 mV, while a sudden increase of RMSE can be
found for the cases with voltage intervals of more than 30 mV. The
results suggest that the sampling rate has a great impact on the pre-
diction accuracy and it should be kept in an appropriate range. When

the voltage interval is less than 30 mV, the proposed RF regression
model produces relatively small errors for all tested cells.

Increasing the sampling rate requires enhanced resolution of data
recording as well as the memory of a BMS. Hence, the most appropriate
sampling rate should be as low as possible while not compromising the
estimation accuracy of the model. A voltage interval of 30mV is
therefore recommended for the online application of the proposed
method. With this setting, the minimum time interval between two
adjacent data points is around 480s for a fresh cell under charging
current rate of I;/3. Given the sampling rate of most commercial BMS
can reach 1Hz, the above specification is good enough to capture
characteristics of the signals. Moreover, only 7 data points are collected
by using a voltage interval of 30 mV, and the decreased amount of input
features can largely enhance the computational speed of the proposed
method for online SOH estimation.

5. Discussion

The use of RF regression for improving the accuracy and compu-
tational efficiency in the battery capacity estimation over existing
methods is studied. To this, we compared it with two commonly used
data-driven techniques, the IC analysis and Gaussian Process regression.
The two techniques were chosen due to their simplicity in processing
the input data. They resemble the proposed regression method, as only
partial charging V—Q data are required for SOH monitoring. The pro-
posed model was also tested and validated on a different type of NMC
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Fig. 8. SOH estimation results of tested cells from (a) group 1 (b) group 2 (c) group 3 (d) group 4 (e) group 5 and (f) group 6 by the proposed RF method. The
estimated SOH data for the cells from the same group are represented as an average with periodic error bars showing + one standard deviation.

batteries, and the performance the model is discussed in this section.

5.1. Comparative study with existing SOH estimation techniques

5.1.1. Comparison with IC analysis
As mentioned in the introduction part, IC analysis is an efficient and

quick tool for on-line estimation of battery SOH. Incremental capacity is
calculated by differentiating the change in battery capacity to the
change in terminal voltage during either charging or discharging, as
mathematically given by

dQ _ AQ _ Q—Qm
v AV V=V ©)
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The IC curves of the tested cells generated from constant current
charging curves with a current rate of I;/3 were used for battery SOH
estimation. Here, a Gaussian filter was applied to filter out the noise on
IC curves according to our previous work [8]. The obtained results are
illustrated in Fig. 10(a). Two prominent peaks around 3.57 V and 3.70 V
can be observed on the IC curves of fresh batteries and are named as
peak A and peak B, respectively. According to the previous research,
peak A is correlated with the reactions on the negative electrode
[34,35], and peak B is likely a result of the sequential phase transition
process in the NMC cathode [36,37]. The area under each IC peak re-
presents the capacity of the related reaction during the charging process
[38].

It is observed that the two peaks shift towards higher voltage levels.
The height of peak B decreases with the battery capacity fade, and it
shows a linear relationship with the battery SOH as illustrated in
Fig. 10(b). The estimation function for tested batteries can be expressed
as
SOH (%) = 0.574 X PHg + 56.01 (10)
where PHj indicates the height of peak B. The estimation results of the
developed linear function for battery SOH estimation are listed in
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Table 5. With the developed linear equation, the SOH of batteries can
be estimated with less than a maximum error 4% and an RMSE of
1.59%. The estimation is the poorest in the case of group 5 cells which
are cycled under elevated temperature (45 °C) and 100% DOD. It sug-
gests that the estimation accuracy of IC analysis is influenced by the
cycling conditions. However, a detailed study of temperature effects is
beyond the scope of this paper. IC analysis is not a machine learning
technique, and the LOOCV RMSE is therefore not used for evaluating its
general performance. Instead, the estimation accuracy is compared for
each group of cells between IC analysis and RF regression. Several
important observations can be made based on the results:

e Both IC and RF provide reasonable SOH estimates, but RF outper-
forms IC with better estimation accuracy in terms of RMSE for all
tested cells. This suggests the robustness of the proposed method for
capacity estimation of cells under different cycling condition and
with different ageing behavior.

e IC curves are sensitive to the noise in the V—-Q curves. A proper
smoothing technique to provide proper noise filtering and preserve
the important features on the curves is crucial. In contrast to the
above, filtering is unnecessary for RF regression, since this tech-
nique is highly robust to noise in predictors and thus does not re-
quire a pre-selection of variables.

e It is observed from Fig. 10(a) that the height of peak B decreases
significantly with battery ageing. As the area under the IC peak
represents the capacity of the related reaction during the charging
process, it is evident that the area variation of peak B contributes the
most to the total battery capacity fade. Peak B is located in the
voltage region of 3.6-3.8 V and this explains why the input datasets
from setting 2 give the best estimation result in the RF regression
model. No noticeable feature can be found in the IC curve in the
voltage region of 3.8-4.0 V, which can explain why the proposed RF
model produces the worst results in setting 3. Apparently, the per-
formance of RF model is dependent on how strongly the partial V—Q
data is correlated with cell capacity fade.

e IC analysis is a powerful tool for understanding the battery de-
gradation behavior and can be used to aid the feature selection for a
black-box model such as RF. When applying the RF regression model
on different battery chemistry, the IC technique can be utilized for
finding the part of V—Q data which contributes most to the whole
cell capacity. In this way, trial and error in selecting the region of
interests on the charging curve can be avoided during the feature
selection process.
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Fig. 10. (a) IC curves of cell 1 from type A cells at different ageing states (b) Correlation between measured battery SOH and normalized peak B height.
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Table 5
Estimation error comparison among the proposed RF regression with IC analysis and GR regression method.
Group MAE (%) RMSE(%) Max Error(%) R?
IC GR RF IC GR RF IC GR RF IC GR RF
1 0.88 1.02 0.67 0.93 1.11 0.74 1.98 2.31 1.45 0.97 0.93 0.97
2 1.29 0.91 0.62 1.43 1.08 0.82 2.98 2.97 2.47 0.95 0.95 0.97
3 1.24 0.57 0.36 1.32 0.76 0.48 2.52 3.52 2.22 0.88 0.96 0.98
4 1.34 0.66 0.62 1.59 0.84 0.84 2.36 2.17 2.67 0.98 0.98 0.98
5 1.48 1.83 1.23 1.44 2.06 1.26 2.83 5.21 2.67 0.98 0.81 0.95
6 0.91 0.36 0.43 1.16 0.47 0.55 2.85 1.52 1.50 0.77 0.92 0.92
LOOCV - - - - 1.16 0.82 - - - - - -

5.1.2. Comparison with Gaussian Process (GP) regression

GP regression is a machine learning technique and has been em-
ployed for estimating battery capacity with partial charging curves. The
details of this approach can be found in the work of Richardson et al.
[15], which is similar to our approach by utilizing the input data of
capacity recorded at equispaced voltage points in a specific voltage
range. However, they need to apply a pre-smoothing step for the input
data with Savitzky-Golay filtering to improve the ratio of signal to
noise. Additionally, the voltage intervals used in the article of [15] are
much larger than in this work, which means fewer input datasets for
model training and testing. In order to compare the performance of the
proposed technique with GP regression in terms of estimation accuracy
and computational cost, the input data used for the two techniques
should be the same. Therefore, such a data smoothing step was not
adopted here and the raw data of setting two (relative capacity re-
corded in the voltage range of 3.6-3.8 V with 2 mV intervals) were used
for the comparison of the two methods. The Gaussian process regression
was constructed with a Matern (5/2) kernel function to achieve the
mapping from inputs X to outputs Y. The GP regression model was built
in Matlab environment with the ‘fitrgp’ function. A more detailed
process of setting up this model can be found in https://nl.mathworks.
com/help/stats/fitrgp.html. The estimation errors are listed and com-
pared with RF regression in Table 6. LOOCV was used to validate the
performance of GP regression. The LOOCV RMSE of RF regression is
0.82%, while the value of GP regression is 1.16%. Both GP and RF
regression provide good estimation results, although RF shows a
slightly better estimation accuracy.

The computational cost is an important factor in evaluating the
method from a practical perspective. The algorithms were repeatedly
executed for ten times to obtain the average computational time. Both
of the regression models were performed in MATLAB R2017a (64bit)
and operated on a computer with 2.90 GHz processor and 16.0 GB
RAM. The results of computational time for executing the two models
are shown in Table 6. The computational time for all tested cell groups
is compared. It is clear that RF regression is an order of magnitude
faster than GP regression. This demonstrates the superior computa-
tional efficiency of the proposed RF regression method and shows great
potential for real applications, particularly where the computational
cost is a constraint.

Table 6
Computational time of the proposed method and Gaussian process regression.

Group Computational time (s)
GP regression RF regression
1 23.62 1.39
2 11.32 1.28
3 15.80 1.34
4 17.56 1.05
5 15.56 1.37
6 22.65 0.79
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The proposed method is compared with two existing data-driven
SOH estimation techniques, IC analysis and GP regression, in terms of
estimation accuracy and computation cost. All of them can track the
battery SOH evolution well with partial V—Q data. RF regression out-
performs the other two methods with the tested input data. To obtain IC
curves, derivation and filtering steps are required to get smooth IC
curves. Then the features on the IC curves need to be identified for SOH
estimation with the proposed regression function. When using the
machine-learning based methods of GP regression and RF regression,
such pre-manipulating steps of the V—Q data can be avoided. The raw
charging capacity data can be fed directly into the proposed model for
training and testing. Nevertheless, RF regression provides a better es-
timation effect than GP regression due to the smaller LOOCV RMSE and
faster computation speed.

5.2. Testing and validation on type B batteries

The RF regression method was tested and validated on type B cells
with a nominal capacity of 31.5 Ah from a different battery manu-
facturer. Six cells were all cycled at room temperature for the duration
of the experiments. The cells were divided into 3 groups, with each
group undergoing a different cycling DOD as described in our previous
publication [8]. All the cells were cycled at room temperature with a
charge/discharge current rate of I,/2. In all cases, characterization test
was periodically carried out after every 100 FECs, whereby a I,/3
charge-discharge cycle was applied. The calculated SOH for the cells
from all three groups are plotted against the FECs in Fig. 11(a). As type
B cells have different features from type A cells in terms of capacity,
maximum voltage limit, manufacturing process, etc., the developed RF
regression model trained on type A cells cannot be directly applied on
type B cells. Therefore, we used the same procedures described in the
previous section to train the RF regression model on type B cells.

Feature selection for type B cells follow the same process as de-
scribed in Section 3.1. The charge capacity values were recorded in the
voltage range of 3.6-3.8V with 2mV intervals. The SOH estimation
results on the three groups of type B cells are graphically summarized in
Fig. 11(b)—(d), respectively. The estimated SOH values closely match
the test results, and the estimation errors are listed in Table 7. A
comparison of the results between type A and B cells suggests that the
RF method works better on type B cells. The LOOCV RMSE of type A
cells is 0.84% while the LOOCV RMSE of type B cells is less than 0.31%.
The increased accuracy for type B cells can likely be attributed to the
fact that they exhibit a somewhat more homogeneous capacity fade
behavior throughout the cycling test, as can be seen from Fig. 11(a).
Conversely, the differences in the SOH evolution of type A cells be-
tween the cells cycled under different condition are much larger. Even
the cells cycled under the same conditions can exhibit quite different
ageing behaviors, such as the cells in group 2. The SOH estimation
accuracy on type B cells further emphasises that the proposed method is
effective in estimating the SOH of NMC LIBs, regardless of their che-
mical features or the manufacturing process.
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Fig. 11. (a) SOH evolution of all tested cells from type B cells; battery SOH estimation results of type B cells from (b) group 1 (c) group 2 and (d) group 3 with
proposed RF regression method. The estimated SOH data for the cells from the same group are represented as an average with periodic error bars showing + one

standard deviation.

Table 7
SOH estimations on tested type B cells with proposed RF methods.
Group MAE (%) RMSE(%) Max Error(%) R?
1 0.30 0.39 1.70 0.99
2 0.34 0.38 1.16 0.99
3 0.44 0.53 2.66 0.99
LOOCV - 0.31 - -

5.3. Challenges and future work

This paper presents an accurate online capacity estimation tech-
nique for NMC batteries. One hurdle to the practical implementation of
this method is the variable operating temperature that have a sig-
nificant impact on battery V—Q curves. Although the present results are
derived based on the capacity tests at a constant temperature of 25 °C,
the method should be applicable to varying temperature conditions
when enough training data are available. The most desirable solution
for SOH estimation lies in developing a universal tool, which is ap-
plicable to any type of batteries with good accuracy under various
conditions. Future work will be focused on validating the proposed
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method with different battery chemistries at varying operating tem-
peratures and current rates. To achieve this goal, a large battery cycle
test matrix at different constant stress conditions such as temperature,
current rate and discharging DOD will be generated.

The machine learning technique proposed by this work is not aimed
to offer electrochemical insight into the battery degradation process.
Understanding the underlying ageing mechanisms can help in finding
the most sensitive features for battery capacity fade at various oper-
ating conditions, and then potentially improves the SOH estimation
performance. The ageing process often involves complex and coupled
physical-chemical processes in complicated operating conditions. To
understand the battery degradation mechanisms, post-mortem analysis
using destructive methods like X-ray diffraction and scanning electron
microscope can be helpful. Additionally, the adaptivity of the devel-
oped RF regression method for online application will be evaluated by a
hardware-in-the-loop (HIL) test bench.

6. Conclusions

This work presents a novel machine learning approach for online
battery capacity estimation. The random forest regression model is
developed to approximate the relationship between characteristic
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features extracted from the charging voltage-capacity curve and capa-
city. The charging capacity data recorded in a specific voltage region
with certain intervals is used as input data for model training and
testing. The incremental capacity analysis is used as a complementary
method for selecting the input features, as the evolution of peaks in
incremental capacity curves can directly indicate which part of the
voltage-capacity data is strongly correlated with battery capacity fade.
The proposed algorithm can accurately estimate the capacity of bat-
teries aged under different cycling conditions with a maximum root-
mean-square error of 1.3%. Furthermore, with this method, the online
recorded data from the battery management system can be directly
used as the input feature vectors for monitoring battery health without
any pre-processing procedures, e.g. smoothing or derivation. As a re-
sult, this algorithm has a low computational cost but does not com-
promise the ability to process a large amount of data. These advantages
make the proposed algorithm well suitable for online monitoring of
battery state of health.
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